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The Rice Cherepanov J is calculated for a lap joint in pure shear. By choosing as a condition for fracture 
a critical value J, of this quantity the fracture load of the joint is calculated for linear elastic. perfectly 
plastic and linear hardening behavior of  the adhesive. Comparisons are given with experiments with 
various adhesives and overlap lengths. 

KEY WORDS fracture mechanics; clastoplasticity; adhesive joint; overlap length; crack propagation: 
Rice Cherepanov J integral; theory; experiment. 

1 INTRODUCTION 

The damage of adhesive joints often results from the initiation of cavities which 
coalesce to create a crack. A cohesive fracture results from the propagation of such 
cracks.' It can be predicted using fracture mechanics and this is, indeed, what was 
attempted by Anderson, Bennett and DeVries'and Kinloch and Shaw' in the frame- 
work of linear elasticity and also Yamada"' who studied extension in elastoplas- 
ticity. 

An experimental device often adopted uses a single or double lap joint loaded in 
shear. The simplified analysis of Volkersen' allows one under those conditions, by 
neglecting the bending of the adherends which remain elastic, to calculate the shear 
stress in the adhesive. The Rice Cherepanov integral can then be calculated and 
this is what we intend to show in order to provide a method of evaluation of the 
resistance of the joint to crack propagation. Indeed, it is known that when a crack 
propagates without deviation the Rice Cherepanov integral J is exactly equal to the 
strain energy release rate C in linear elasticity. I t  is usually assumed that this prop- 
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E 
F 

erty remains in elastoplasticity . The propagation condition corresponds then to a 
critical value of J called J,. 

This model will be compared with experimental results. It will allow one to study 
the influence of various parameters useful in optimizing the design of adhesive 
joints. 

- D  - 
A- 

2 CALCULATION OF RICE CHEREPANOV INTEGRAL J 

2.1 General Case 

Let us consider a lap joint of length 21, width B, thickness h ,  with two adherends 
of thicknesses and Young's moduli, respectively, h i  and h2, El and E2. A force F is 
applied on each arm (Figure 1). 

The origin of the coordinate, x, is at the center of the joint. Neglecting the bending 
of the adherends, the adhesive is loaded in pure shear T .  The equilibrium of any 
section yields 

where u1 and u2 are the normal stresses in the adherends (constant in adherend 
thickness). The equilibrium of a slice in the adherends yields 

hiul + h2~7=F/B (1) 

du I du2 T(X) = hi- = - h2- dx dx 

T being the shear stress in the adhesive. 
We consider a crack starting at one end of the joint. A contour ABCDEF along the 
joint is chosen as shown on Figure 2. The Rice Cherepanov integral J is given by 

E2 p 2  X 

rl 21 3 

FIGURE I Sketch of the lap joint 
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NON LINEAR FRACTURE MECHANICS 263 

J =  (3) 
ABCDEF 

where W(x) is the strain energy density, t, and t, are the components of the stress 
on the contour, and u, and u, those of the displacemert. I t  reduces to 

du 
dx 

dx + 1 W(x)dy - 1 t,( - dx) 
BC CD DE 

or 

dx+ W(x)h + 1 ~ ( x ) g  u1 dx 

BC 

because 
DE 

(4) 

Using the relations (2) and the boundary conditions u2( - Y2) = F/Bh2 and 
al( - Y2) = 0 the preceding integral ( 5 )  yields: 

I t  is easy to demonstrate that this integral is contour independent whatever the 
mechanical behavior of the adhesive, by showing that dJ/dx = O .  This results from 
the following: 

dW - dy Td(ul-uz) W = l T d y  and --T-=- dx dx h dx 
I 1  

2.2 Symmetrical Case 

When the two adherends are identical, 

hi = h2= h, El = Ez = E, 

We will consider the case where there are two symmetric cracks at each end of 
the joint leaving a length, 2b, of undamaged adhesive. The calculation of the stress 
should be made by using an effective half length, b, as the stress relaxes in the 
cracked region. 

In such a case, choosing a contour crossing the origin, 

(9) 

To calculate J i t  is sufficient to know the value of the strain energy density in the 
center of the joint. An alternative way to calculate J is to choose a contour which 
goes through the crack tip (x = - b). In such a case the following expression is found: 

J=hW(x=  -b)  (10) 
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In the following, this will be carried on in three cases: linear elasticity, perfect 
plasticity and linear hardening. 

2.3 Explicit Calculations of the Fracture Load for Various Types of Mechanical 
Behavior 

2.3.1 
eters. 

Definitions It will be useful to introduce some non-dimensional param- 

S = FIF,, where F,, = 2Bk(E,h,h/2p)I” (11) 

p and k being, respectively, the elastic modulus and the yield stress in shear of t h e  
adhesive. 

This parameter will be called SL when F is equal to F,-, the limit load of the joint, 
2Bbk, and SF when the crack begins to propagate. 

SL = b(2p/E,h,h)”2 (12) 

We define also 
1 /? 

S,= (S- 1) 

To calculate the fracture load we assume that the crack begins to propagate when 
the Rice Cherepanov integral J reaches a critical value, J,. This is valid insofar as 
J can be considered as the crack driving force. It is the case if the crack propagates 
without any deviation whatever the fracture mode, which, in the present case, is 
pure mode 11. In the following, in each case, the formula (9) will be used to calculate 
J ,  and by setting J=J, ,  the fracture load SF will be obtained. 

2.3.2 Linear Elastic Case The result obtained by integration of equations (2) and 
( 6 )  is well k n o ~ n ; ~ . ~  using the condition of symmetry, the following general solution 
is easily obtained: 

T =  Ach(aSL) (14) 

where a = xlb, A can be determined by using the equilibrium condition of the joint. 
In our case, it is found 

Tlk = SchaSLIshSL (15) 
Formula (9) then yields, insetting the critical value J, of J and using W(x = 0) = 
?/2p = k2S~/2psh2SL. 

S F =  (1 + Sf)”2thSL (16) 

It is easy to check that, indeed, J = G  the strain energy release rate given by the 
compliance formula. 

However, for a not completely brittle adhesive plasticity begins to spread as soon 
as the shear stress in the adhesive reaches the yield stress, k ,  at the place where it 
is the largest, that is to say, near the tip of the crack. This happens when 

S = So= thSL (17) 
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NON LINEAR FRACTURE MECHANICS 265 

Thus, this situation always occurs before the beginning of crack propagation since 
S,,<SF, given by the formulae (16) and (17). The case of a plastically deformed ad- 
hesive must now be studied. 

2.3.3 Perfect Plasticity The yield stress is reached in the adhesive over a length 
I, on each side. Let 1,=Ab. At first, the central part remains elastic and equation 
(14) keeps holding. Using the condition, k = ~  (01=(1 - A ) ) ,  the shear stress there 
can be written: 

T/k  = chaSL/ChSL( 1 - A )  (18) 

S = ASL. + thS,( 1 - A )  (19) 

St-SZ=th’SL(l - A F )  (20) 

and the equilibrium conditions of the joint allow one to write 

According to relation (9) 

AF being the plastic zone size when cracking begins (J = JJ.  The two preceding 
equations (19) and (20) give the relation SF and the  parameters SL and S, by elirnina- 
tion of AF leading to: 

SL = SF + argth(S:- S:)”’ - (St - S:)”’ (21) 
The equation (21) shows that for larger values of SL, SF can be given by (1 +S:)”’ ,  
predicted by the elastic fracture case. 

I t  ceases to be valid at general yield when AF = 1. Then simply 

s F = s L  (22) 

Figure 3 shows the variation of S, as a function of S,. 
I t  is also found that i f  J, remains constant when the crack propagates, the propaga- 

2 

sc=2 

1 

0 
0 I 2 3 4 5 6 

S L  
FIGURE 3 
SL= b(Zp/E,h,h)’ ’. 

Variation of the fracture load Sb a\ a function o f  the parameter S, which is equal to 
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tion is catastrophic. SF is the fracture load of the joint and only small cracks can 
trigger fracture. Under those conditions the effective length b is nearly equal to I ,  the 
half overlap length, saying b = 1 - h, and SL is indeed a function of this dimension. 

2.3.4 Linear Hardening 
of the adhesive can be written: 

In the case of linear hardening, the mechanical behavior 

T =  ppy + k( 1 - pp/p) T > k  (23) 

Let 6 = P/PP (24) 

where p., is the plastic shear modulus and y the strain. 

When the central part of the joint remains elastic, in that area equation (18) keeps 
holding. However, the equilibrium condition leads to a more complicated equation 

S=th[SL(1 -A)] -Gth[SL(l -A)/G] +Gsh(SL/G)/ch[SL(l -A)/&] (25 )  
Using the equation (9) again, equation (20) holds: 

Sk - Sf = th’SL( 1 - A,) 

These two preceding equations show that the parameters AF can be eliminated when 
S=SF,  giving the relation between SF and SL. 

When general yield is reached, hF= 1, then 

S = S, = Gsh(SL/G) 

and fracture occurs in this case when 

S =  SF= (S: + S’)”’th(S,/G) 

Figure 4 shows the variation of SF as a function of SL/6. 

0 1 2 3 4 5 6 
SL/8 

FIGURE 4 
parameter SL/6 equal to b(Zp,,/E,h,h)’ ’. 

Variation of the fracture load SF and of the general yield load S,, as a function of the 
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NON LINEAR FRACTURE MECHANICS 267 

3 COMPARISON WITH EXPERIMENTS 

Tests were carried out with double lap joints for two of the adhesives (ESP 110, 
and ECCOBOND 45LV, Emerson and Cuming). The results in the literature given 
by ESDU' were also used for comparisons. The chai.acteristics of the adherends 
and of the adhesives are given in Table I .  

TABLE I 
Characteristics of the Joints 

joint h (mm) h, (mm) k (MPa) E, (GPa) p (MPa) J, (kJ/m') 

ESP 110 0.1 4 36 70 2200 1.2 
ECCOBOND (1.1 4 27.2 70 1900 0.65 

ESDU 0.1 2 40 140 650 0.51 

Table I1 gives the value of the parameters for the various joints 

TABLE I 1  
Parameters of the Joints 

ESP 110 (1.40 6.30 6.38 
ECCOBOND 0.37 5.69 5.78 

ESDU 0.21 1.73 2.00 

1x0 
147 
38 1 

The results obtained for various overlap lengths are shown on Figure 5. The solid 
lines correspond to the model in perfect plasticity. A fair agreement is obtained and 
it should be noted that other models based on maximum strain (stress) are much 
less adequate. 

8, 
ECCOBOND 45LV(mod) 
ECCOBOND 45LV(exp) 

----. 

LL 
rA 

4, 

2, 
ESDU(mod) 
ESDU(exp) 
elastic - anelastic P--- 

0 5 10 15 20 25 
SL 

FIGURE S 
model in perfect plasticity. 

Comparison between experimental results obtained for different overlap lengths and the 
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4 DISCUSSION 

The most important parameters which determine the strength of a lap joint are Sl. 
and S,. When two joints are such that these non-dimensional parameters are equal, 
they should behave in the same way. They allow one to study the influence of the 
mechanical and geometrical parameters. 

Figure 5 clearly demonstrates that a certain critical overlap length, I,, should be 
reached given by SL = S,. As it is a large enough number this relation yields 

I,( 2 p/E,h,h) ‘ I 2  -- (2 pJ,/h k’) 

I, = (E,h,J,.)’’’/k 

When the overlap half length is larger than this critical value, I,, the fracture load 
is equal to 2B(E,h,J,)’/’ which is independent of the adhesive thickness. The only 
parameter for a given adherend is then the fracture toughness, J,, of the adhesive. 
However, when the critical length is not reached, SF, which depends on h through 
the parameter SL, increases when the adhesive thickness decreases. But again, after 
general yield, the adhesive thickness does not influence the limit load. 

In this analysis the bending of the adherends was neglected. This bending creates 
normal stresses on the adhesive interface and thus introduces a mode 1 opening 
which should add to the crack extension force. This case can be easily studied in 
the elastic case using the solution given by Goland and Reissner.“’ However, the 
experimental results and the simple shear theory show that the influence of the 
bending is slight. 

5 CONCLUSION 

The Rice Cherepanov integral was calculated for a lap joint loaded in pure shear. 
As the adherends remain elastic, it is contour independent whatever the mechanical 
behavior of the adhesive. For linear elastic, perfectly plastic and linear hardening 
behavior of the adhesive, explicit formulae were given which allow one to determine 
the fracture load of the joint. 

This model was shown to agree well with experiments. This J criterion is different 
from the maximum strain (or stress) criteria. 

The fracture load is essentially a function of the parameters (2plE,h,h)”‘ and 
(2pJ,lhk2)”’. Above a critical overlap half length 1, given by (E,h,J,)”?/k, the frac- 
ture load is constant and equal to 2B(E,h,J,)”’, independent of the adhesive thick- 
ness. 

Table of Symbols 

b uncracked adhesive half length 
h adhesive thickness 
k adhesive shear yield stress 
1 overlap half length 
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plastic zone size 
stress components 
displacement components 
coordinate 
joint width 
Young’s moduli of the adherends 
applied load 
normalization load Fo= 2Bk(E,h,h/2p)”’ 
fracture load 
strain energy release rate in linear elasticity 
Rice Cherepanov integral 
fracture toughness 
non-dimensional parameter S = F/F,, 
non-dimensional parameter S,. = b(2p/E5h,h)”? equal to the value of S 
at limit load 
value of load parameter at fracture 
value of load parameter at first yielding 
value of load parameter at general yield 
non-dimensional fracture parameter S, = (2pJC/hk’ - 1)l’? 
ratio x / l  or x/b 
modulus ratio (p./p,,)”2 
plastic size ratio h = l , / b  
value of A at fracture 
normal stress in adherends 
shear stress in adhesive 
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